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Abstract:
A feature of GMM estimation--the use of a consistent estimate of the optimal

weighting matrix rather than the joint estimation of the model parameters and the
weighting matrix--can lead to the sensitivity of GMM estimation to the choice of
parameter normalization.  In many applications, including Euler equation estimation, a
model parameter multiplies the equation error in some, but not all, normalizations. 
But, conventional GMM estimators that either hold the estimate of the weighting
matrix fixed or allow some limited iteration on the weighting matrix fail to account for
the dependence of the weighting matrix on the parameter vector implied by the
multiplication of the error by the parameter.  In finite samples, GMM effectively
minimizes the square of the parameter times the objective function that obtains from
an alternative normalization where no parameter multiplies the equation error, resulting
in estimates that are smaller (in absolute value) than those from the alternative
normalization.  Of course, normalization is irrelevant asymptotically.
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     Recent examples include estimates of the linear-quadratic inventory model (e.g. West (1986), Ramey (1991),1

Krane and Braun (1991), West and Wilcox (1993), and Fuhrer, Moore, and Schuh (1995)), models of convex
adjustment costs for capital and labor (e.g. Shapiro (1986a, 1986b), Burgess and Dolado (1989), Burda (1991), Pfann
and Palm (1993), Oliner, Rudebusch, and Sichel (1996), Sbordone (1996), Pfann (1996), Fleischman (1996), and Basu
and Kimball (1997)), intertemporal consumption models (e.g. Hansen and Singleton (1982)), and price-adjustment
models (e.g. Roberts, Stockton, and Struckmeyer (1994)).

     See Bartelsman (1995) for a discussion of the sensitivity to changes in equation normalization of Hall’s (1988,2

1990) two-stage-least-squares estimates of the price-markup ratio and returns-to scale.

     In finite samples, normalization is also irrelevant when the parameters are just identified.3
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I. Introduction

Generalized method of moments (GMM) techniques have been used to estimate the structural

parameters of the Euler equations (first-order conditions) from a wide variety of dynamic rational

expectations models.    However, the well-documented finite-sample sensitivity of GMM estimation to1

changes in parameter normalization has raised important issues about the usefulness of GMM

estimators.  Recent work by Krane and Braun (1991), West and Wilcox (1993), and Fuhrer, Moore,

and Schuh (1995) has highlighted the economically important sensitivity of GMM estimates of the

parameters of the linear-quadratic inventory model to the choice of the normalization of the Euler

equation.   Yet, GMM estimation remains popular for its ability to provide asymptotically efficient2

estimates in nonlinear models with assumptions only concerning instrument orthogonality.  And, of

course, normalization is irrelevant asymptotically; GMM estimators that differ only in their choice of

parameter normalization have identical asymptotic distributions.3

Because normalization is irrelevant asymptotically, the key to the normalization sensitivity

must be related to finite-sample estimation procedures and not to the formation of the theoretical

GMM objective function.  Hausman (1975) shows that an important difference between full

information maximum likelihood (FIML) and three-stage-least-squares, which is the GMM estimator

under the assumptions that the residuals are homoskedastic and serially uncorrelated, is that FIML

iterates simultaneously on the parameters and covariance matrix so that "the instruments used by FIML

are mutually consistent with the parameter estimates in the given sample, while for other estimators the

instruments are consistent with the parameter estimates only asymptotically. (p. 727)"  Hansen, Heaton,

and Yaron (HHY, 1996) differentiate three classes of GMM estimators based on the treatment of the

weighting matrix:  An estimator that holds fixed an initial consistent estimate of the weighting matrix

as the selection of parameter values iterates towards convergence; an estimator that iterates on the



     HHY argue, however, that there is no particular advantage to using the continuously updating estimator to4

obtain point estimates; the elimination of the normalization sensitivity is, in their opinion, at least offset by the
thickening of the tails of the distribution of the estimator.  They state that "(i)n this sense continuous updating
sometimes inherits the defects of maximum likelihood estimators relative to two-stage least squares estimators in the
classical simultaneous-equations environment."  (p. 278)
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weighting matrix but not at every change in parameter values; and an estimator that continuously

updates its estimate of the weighting matrix to reflect the current parameter values.  HHY show that

the GMM estimator that continuously updates its estimate of the weighting matrix to reflect the current

parameter values is immune from the normalization sensitivity because, like maximum likelihood

estimators, this GMM estimator accounts explicitly for the dependence of the GMM weighting matrix

on the model parameters.   However, the GMM implementations in popular econometric packages,4

such as RATS and TSP, do not include a continuously updating estimator.

In this paper I identify how a feature of most conventional GMM estimators--the use of a

consistent estimate of the optimal weighting matrix rather than the joint estimation of the model

parameters and the weighting matrix--can explain the GMM parameter normalization puzzle. 

Specifically, conventional GMM estimators that either hold the estimate of the weighting matrix fixed

or allow some limited iteration on the weighting matrix fail to account for the dependence of the

weighting matrix on the parameter vector.  In finite samples, two GMM estimators that differ only in

the parameter normalization of the estimating equation minimize two different objective functions. 

Using a simple, linear Euler equation as an example, I derive the orthogonality conditions, weighting

matrices, objective functions, and first-order conditions for a pair of GMM estimators that differ only

in the choice of parameter normalization.  I show that in the more "natural" normalization plus an

expectations error--the one that obtains when an unobserved expectation in the Euler equation is

replaced by its ex poste realization--a model parameter multiplies the rational expectations error.  This

normalization implies restrictions on the weighting matrix that cannot be imposed by the GMM

estimators typically used.  For limited class of dynamic rational expectations models--those that

include only one unobserved expectation--there is an alternative normalization where no model

parameter multiplies the rational expectations error.  This alternative normalization implies no

restrictions on the weighting matrix.

In the first normalization, the failure to parameterize the weighting matrix implies that the

GMM estimator effectively minimizes, in part, the square of the parameter that multiplies the rational

expectations error.  This introduces an extra term in the first-order conditions for which the GMM

estimator is the solution; of course, this extra term has a plim of zero and thus vanishes



     There is no closed-form solution to the adjustment cost model.  As an alternative to Monte-Carlo simulations, I5

provide estimates of the model for a large number of four-digit industries.

     Similarly, I find normalization sensitivity in GMM estimates of the costs of adjusting nonproduction worker6

employment from a single equation implementation of Shapiro's (1986) model of dynamic factor demand.

     See Hamermesh (1993) for a summary and synthesis of the literature estimating the costs of adjusting7

employment and the speed of employment adjustments.  Implied estimates (by the parameters estimated in papers
using different methodologies) of the half-life of employment adjustment are clustered towards the lower end of the
range from 1.5 months in Bernanke (1986) to 10 months in Kennan (1988).

     The QML estimator is similar conceptually to the continuously updating GMM estimator that HHY discuss.  In8

addition, if the residuals are normally distributed, the QML estimator is the limited information maximum-likelihood
(LIML) estimator, and thus efficient among the class of limited-information estimators.
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asymptotically, preserving the asymptotic irrelevance of the choice of normalization.  But in finite

samples, the estimate of the parameter that multiplies the rational expectations error will be smaller (in

absolute value) than corresponding estimate from the alternative normalization.  In the alternative

normalization, the finite-sample GMM objective function is similar in structure to the theoretical

GMM objective function because no parameters multiply the rational expectations error.  I argue,

therefore, that the estimator that implies no restrictions on the weighting matrix is preferable, at least

on theoretical grounds.

Empirically, the predictions about the relationship between the estimators are borne out.  I

compare GMM estimates of the costs of adjusting production worker employment for more than 100

four-digit SIC manufacturing industries from two different normalizations of a cost minimization

condition derived from the Euler equations for the rational expectations dynamic cost minimization

model from Fleischman (1996).   The results are quite sensitive to the choice of normalization.  5 6

Estimates of adjustment costs from the more natural normalization are economically trivial and imply a

median half-life of adjustment of 0.5 month.  In contrast, GMM estimates of the alternative

normalization where no parameter multiplies the expectations error are larger (often by more than an

order of magnitude) and imply a median half-life of employment adjustment of 2.0 months, which is

comparable to estimates previously found in the literature.7

I reestimate Fleischman's labor adjustment cost model using Quasi Maximum Likelihood

(QML) and compare the QML estimates to the two sets of GMM estimates.  The QML estimator is a

useful benchmark for choosing between the GMM estimators because the QML estimates are

consistent and use the same orthogonality conditions as the GMM estimates.   Most importantly, the8

QML estimator is invariant to renormalization because the likelihood function accounts for any

changes to the score and covariance matrices caused by reparameterization of the model.  The QML



     I consider only the case of a single unobserved expectation, or, more generally, of a single dominant source of9

equation error, because a normalization where no parameter multiplies an expectation error exists only for this limited
class of estimating equations.  However, this simplification is not necessary to demonstrate that the failure to
parameterize the weighting matrix is the source of the GMM normalization sensitivity.
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estimates are similar both quantitatively and economically to the larger of the two sets of GMM

estimates, which I argue provides further empirical support in favor of GMM estimation of the

alternative normalization. 

Following this introduction, the rest of the paper is organized as follows.  In section II, I

derive two alternative GMM estimators of a simple, linear Euler equation and use this example to

demonstrate how the failure to parameterize the weighting matrix explains the normalization

sensitivity.  In section III, I demonstrate this point empirically.  I discuss the GMM estimation of two

normalizations of the employment adjustment cost model from Fleischman (1996) and provide two sets

of GMM estimates for individual four-digit SIC manufacturing industries.  I show that the GMM

estimates of adjustment costs from the alternative normalization are always larger than those from the

natural normalization, and, thus, more economically plausible.  In section IV, I reestimate the model

using QML and find that the QML estimates of adjustment costs are economically similar to the GMM

estimates from the alternative normalization.  Finally, in Section V, I summarize the results and point

out useful directions for future work.  In Appendix A, I briefly describe the dynamic labor demand

model from which I obtain the Euler equations estimated in Sections III and IV.

II. Finite-Sample Implications of the Failure to Parameterize the GMM Weighting Matrix

Econometric packages commonly used by applied macroeconometricians--such as TSP and

RATS--implement GMM estimators that are subject to normalization sensitivity because these

estimators either hold constant an initial estimate of the weighting matrix or allow iteration on the

weighting matrix that does not fully account for its structure.  Thus, to evaluate empirical work, it is

important to try to better understand the source of the normalization sensitivity.  In this section, I

demonstrate how the failure of common GMM estimators to parameterize their weighting matrixes

leads to the well-documented finite-sample sensitivity of GMM estimates to parameter normalization.9

I begin with a general specification of a linear Euler equation from a dynamic rational

expectations model:



     Including � in the orthogonality conditions raises a tricky methodological issue.  The orthogonality conditions10

would obviously be satisfied exactly if � = 0, even if .  However, if � = 0, there is no dynamic model

nor is there any equation error.  Consequently, if � = 0, the parameters of the Euler equation are not estimable.

5

(2.1)

(2.2)

(2.3)

where Y  is an endogenous variable, � is a single unknown parameter, and E [ ] is the expectationst t

operator conditional on information available in period t or earlier.

I will derive two GMM estimators of � that differ only in the choice of parameter

normalization of the Euler equation.  Note that E [Y ] is unobservable and that Y  = E [Y ] + � ,t t+1 t+1 t t+1 t+1

where �  is a rational expectations error orthogonal to information available in period t or earlier.  It+1

obtain the first normalization by following the standard practice and replacing the unobserved

conditional expectation, E [Y ], with the ex poste realization and the expectations error to obtain:t t+1

In this representation of the Euler equation, the model parameters can be consistently estimated by

GMM if there are sufficient instruments, Z , such that t

A GMM estimator of � sets a weighted average of sample moments as close to their population values

as possible, where the moments are based on the orthogonality of the instruments, Z , and the rationalt

expectations error, � , implied by equation (2.2).  In this normalization--which I refer to as the levelt+1

normalization because the level of � enters equation (2.1) directly--the finite sample orthogonality

conditions are:10

Note that � multiplies the rational expectations error in equation (2.1), and thus appears in the

orthogonality conditions, equation (2.3).  At this point, most practitioners drop the � from the equation

error and the orthogonality conditions, replacing it with, for example, �  = �� .  This substitution ist+1 t+1

important because it obscures the fact that � multiplies the rational expectations error.  In fact, this

may help explain why the presence of a parameter multiplying the rational expectations error had not

been identified previously as a source of the parameter normalization puzzle.

In the level normalization, the GMM estimator of �, , minimizes the GMM objective

function:



     In this normalization, it is clear that � cannot equal 0.  Consequently, the parameter vector, � does not have a11

compact support.  However, as I noted above, if � equals 0, there is no equation error, and thus no estimable model. 
I follow the standard practice in this literature by not addressing this important methodological point here.
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(2.4)

(2.5)

(2.6)

which is the distance between the sample moments of the orthogonality conditions, , and their

population values, where the distance metric weights by the weighting matrix.  The optimal weighting

matrix is the asymptotic covariance matrix of the orthogonality conditions:

Because � is a scalar, the optimal GMM weighting matrix for the level normalization can be rewritten

as:

This normalization implies parameter restrictions on the GMM weighting matrix in equation (2.5). 

However, a conventional GMM estimator that does not parameterize its weighting matrix cannot

impose these restrictions.

By dividing equation (2.1) through by �, I obtain an alternative normalization of the Euler

equation:11

where no model parameter multiplies the unobserved expectation.  This second normalization--which I

refer to as the inverse normalization because 1/� enters the Euler equation--can be consistently

estimated under the same conditions required for the consistent estimation of the level normalization,

namely that equation (2.2) holds.  Renormalization, of course, does not change the economic

interpretation of the model or the orthogonality conditions.  The orthogonality conditions for the

inverse normalization are:



     For example, in the empirical work below I use NL2SLS to obtain an initial estimate of the weighting matrix12

for NL3SLS, and then I use NL3SLS to obtain a consistent estimator of the weighting matrix for GMM.  The
difference between the GMM and NL3SLS estimators is that the GMM estimator used in this paper allows different
instruments for the two equations.  See Hamilton (1994) for a concise description of GMM estimation.

7

(2.7)

(2.8)

(2.9)

and the optimal weighting matrix is

Because no parameters multiply the rational expectations error in the Euler equation or the

orthogonality conditions, the inverse normalization implies no parameter restrictions on the weighting

matrix in equation (2.8).

Asymptotically, the GMM objective functions for the level and inverse normalizations are

identical:

Renormalization changes the orthogonality conditions and the weighting matrix in such as way as the

differences are offset completely in the construction of the population objective function:  In the

theoretical GMM objective function for the level normalization--shown in the top two lines of equation

(2.9)--the � in the orthogonality conditions offset the � in the weighting matrix.

In finite samples, however, GMM estimation begins with a consistent estimate of the

weighting matrix obtained from a simpler, yet still consistent estimation procedure.   The most12

common GMM procedures hold the weighting matrix constant while the parameter values iterate to



     I limit the discussion to GMM estimators that do not fully iterate on the parameters of the weighting matrix. 13

The continuously updating GMM estimator discussed by Hansen, Heaton, and Yaron (1996) is similar in spirit to the
quasi-maximum likelihood estimator that I discuss in section IV.

8

(2.10)

convergence; alternative GMM estimators allow both the parameters and the weighting matrix to be

updated at each iteration.  Neither GMM procedure, however, allows for parameterization of the

weighting matrix.   This is not an issue in the inverse normalization where the weighing matrix does13

not include terms multiplied by the adjustment cost parameter.  In this normalization, the GMM

estimator minimizes:

where  is a consistent estimate of W .  The GMM estimator of � for the level normalizationI

minimizes:

which, because h  = �h , is equivalent to minimizingL I

where  is a consistent estimates of W .  The failure to parameterize the weighting matrix impliesL

that it is not possible to impose the restriction that the � that appear in the asymptotic optimal

weighting matrix for the level normalization is the same � that appears in the orthogonality conditions.

Because the GMM estimators most commonly implemented in empirical work do not

parameterize the weighting matrix, the estimates do not account for its dependence on �; specifically,

unlike in the theoretical objective function, the � in the orthogonality conditions are not cancelled by

the � in the weighting matrix.  As shown above, in effect, the GMM estimator for the level

normalization minimizes �  times the objective function that would obtain if the dependence of the2

weighting matrix on � were parameterized.  In finite samples, therefore, the two GMM estimators

solve different first-order conditions despite identification by the same orthogonality conditions.  The

GMM estimator of � in the level normalization,  solves the first-order conditions:

while the GMM estimator of � in the inverse normalization,  solves:



9

(2.11)

(2.12)

The extra term in the first-order conditions for the GMM estimator of level normalization--equation

(2.10)--arises from the failure to parameterize the weighting matrix.  Of course, asymptotically the

first-order conditions for the inverse and level normalizations are identical because  and

, so this extra term vanishes.

In finite samples, however, the differences between the two first-order conditions imply that

GMM estimation of the inverse and level normalizations yield different parameter estimates even when

the same instruments are used.  To establish the relationship between the estimates of � from the

inverse and level normalizations, I must examine two cases:  (1) both estimates of � have the same

sign and (2) the estimates of � have different signs.  The extra term in equation (2.10) must have the

same sign as the estimate of � from the level normalization because  is a weighted sum of

squares--implying that it must be non-negative. 

For case 1, assume without loss of generality that both estimates of � are positive.  Then, the

first term in equation (2.10) is positive.  This implies that the second term in equation (2.10) is

negative.  So, with  proportional to , the slope of the objective function for the inverse

normalization evaluated at  must be negative:

Since GMM minimizes its objective function, if the objective function has a negative slope when

evaluated at  (and a zero slope when ),  must be larger than .

Now, consider case 2.  Assume that  and .  The, the first term in equation

(2.10) must be negative, implying that the second term must be positive.  Therefore, the slope of the

GMM objective function for the inverse normalization evaluated at  must be positive.  This, in

turn, implies that , which is impossible.  Similarly, if  and , then the GMM

objective function for the inverse normalization evaluated at  must be negative, so ,

which is also impossible.  This establishes that the two estimates must be of the same sign, so only

case 1 is relevant (and  must be larger than ).



     Of course, other considerations may figure into the choice of a preferred normalization, especially instrument14

relevance.  In Euler equation estimation, selecting a normalization on the basis of instrument relevance likely points in
the same direction, as valid instruments are likely more highly correlated with the endogenous period t variables than
with the period t+1 variable.

     In this section, I have limited discussion to the case where there is a single source of equation error.  In most15

applications, however, there are multiple sources of error; in addition to the expectations error featured above, the
residual in an Euler equation also likely includes a specification error and, possibly, measurement errors.

     See Appendix A for a description of the model and the derivation of the estimating equation.16
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The GMM estimator of the inverse normalization should be preferred on theoretical grounds.  14

Although the estimates have identical asymptotic properties, the failure to impose the parameter

restriction in the weighting matrix of the level normalization leads to a finite-sample estimate of � that

is "too low."  Moreover, because the inverse normalization implies no similar restrictions, the use of a

consistent estimate of the weighting matrix has fewer consequences; in particular, the finite-sample

objective function and first-order conditions in the inverse normalization are identical in form to the

theoretical GMM objective function and first-order conditions.   15

III. An Application:  GMM Estimation of a Model of Costly Employment Adjustment

In this section, I demonstrate the empirical relevance of the arguments offered above.  I

provide two sets of GMM estimates of the costs of adjusting employment from the dynamic labor

demand model in Fleischman (1996).   I find that estimates of adjustment costs for four-digit SIC16

manufacturing industries from the level nomalization of the Euler equation are economically trivial,

while those from the inverse normalization are significantly larger.  Given that it is GMM estimation

of the more natural level normalization that produces estimates of adjustment costs that are too small,

it is important to recognize and address the implications of the normalization sensitivity.

The key parameter that I estimate is �, the adjustment cost parameter for production worker

employment.  Following Bils (1987), the model identifies the costs of adjusting production worker

employment based on the relative movements of average weekly hours, H , and production workert

employment, L .  Under this identification scheme, the estimates of adjustment costs will be large if ant

industry reacts to an increase in its demand for production worker hours by increasing overtime hours-

-and paying the overtime premium--rather than increasing production worker employment.  In

comparison, an industry with low adjustment costs will have a higher ratio of the variance of

employment relative to the variance of weekly hours than an industry with large adjustment costs.



     Fleischman (1996) obtains equation (3.2) by equating two measures of marginal cost--one based on the17

intratemporal first-order condition for weekly hours and the other based on the intertemporal first-order condition for
production worker employment.  See Appendix A for a more detailed discussion.
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(3.1)

(3.2)

(3.3)

The model has two equations that are estimated jointly:17

and 

where the second equation is shown in its "level" normalization, and O  is weekly overtime hours, Rt t+1

is the real interest rate between periods t and t+1, C  is hourly compensation--the sum of hourly wages,t

W (H ), which depend of weekly hours, and nonwage benefits, B --and W  is hourly wages excludingt t t t
b

overtime; � is the elasticity of weekly overtime hours with respect to total average weekly hours and

� is the ratio of the output elasticity of weekly hours relative to the output elasticity of production

worker employment.  �  is the rational expectations error, which is the equation error in the absencet+1

of measurement errors or specification errors.

Note, that in equation (3.2), the adjustment cost parameter multiplies the rational expectations

error.  According to the arguments above, this will lead to GMM estimates of adjustment costs from

this normalization that are "too low."  To obtain the inverse normalization of this model, I divide

equation (3.2) by the adjustment cost parameter, �, to obtain:

If the model is correctly specified, the disturbance �  is, by definition, uncorrelated with informationt+1

available in period t or earlier.

I estimate the model for more than 100 four-digit SIC industries using monthly data covering



     See Fleischman (1996) for a complete description of the data.  Data on employment, weekly hours, and hourly18

earnings are not seasonally adjusted.  Compensation is the sum of fringe benefits (that do not directly depend on
wages), wages and salaries, and non-wage benefits tied to wages.  Annual data on non-wage compensation are
available in the National Income and Product Accounts (NIPA) for two-digit SIC manufacturing industries.  I
interpolate (error-ridden) measures of monthly fringe benefits per worker for the four digit industries by assuming that
fringe benefit payments are constant through the year.  Were I to address this issue directly by formally modeling the
measurement error, I would modify the error terms in equations (3.2) and (3.3) to include four measurement errors,
and each of these errors would be multiplied by model parameters.  This would obscure the sharp distinction between
the inverse and level normalizations that I exploit below.  Furthermore, because the variance of the measurement
errors is quite small relative to the variance of the expectation error, including the measurement errors greatly
complicates the exposition and the algebra but contributes little to clarity.

     I exclude continuous process industries and report results only for industries for which I obtained plausible19

parameter estimates.  See Table 2.1 in chapter 2 of Fleischman (1996) for details.  These industry exclusions should
not systematically affect the comparisons of the different GMM estimators.

     I use different instruments for the two equations in the model.  For supplementary equation identifying the20

relationship between overtime and total weekly hours, the instruments are monthly dummies and a quadratic time
trend.  

     Under the assumption that there is no measurement error in the two-digit SIC values of employment, weekly21

hours, overtime hours, hourly earnings, and hourly earnings excluding overtime, the two-digit SIC instruments are
valid.  Fleischman (1996) examines the robustness of the estimates of adjustment costs to this assumption by
reestimating the model using aggregate instruments that are once- and twice-lagged and finds that the results are
qualitatively similar.
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the period 1982:7 to 1993:11.   Because the model has no closed form solution, Monte-Carlo18, 19

simulations are not possible; instead, I provide estimates of adjustment costs using the two different

normalizations for a large number of industries in order to show the robustness of the results.  More

formal testing is left for future worker based on simpler models.

The inverse and level normalizations imply the same orthogonality conditions and the same set

of admissible instruments.  For the cost minimization condition (either equation (3.2) or (3.3)), the

instruments are monthly dummies, a quadratic time trend, and aggregate (two-digit SIC industry)

values of the percentage change in production worker employment and its square, weekly hours per

worker and its square, weekly overtime hours per worker and its square, the percentage change in real

(product) average hourly earnings and real (product) average hourly earnings excluding overtime, and

the squared percentage change in production worker employment interacted with the quadratic time

trend.  These instruments are all dated period t, and thus are orthogonal to the period t+1 expectations

error.   Because the instruments are constructed using only information from the BLS establishment20

survey, they are plausibly orthogonal to the measurement errors in fringe benefits.21

In addition, I constrain adjustment costs to be positive by expressing the adjustment cost

parameter as g = log(�) and replacing � in equations (3.2) and (3.3) with e .  Imposing this constraintg



0 

5 

10 

15 

20 

25 

30 
Le

ve
l N

or
m

al
iz

at
io

n

0 5 10 15 20 25 30 
Inverse Normalization

     See Amemiya (1985), p. 106.  For this reason, I also estimate the parameter 1/� rather than �.22
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Figure 3.1
Comparison of GMM Estimates of Adjustment Costs:  Level Normalization vs. Inverse

Normalization

Notes for Figure 3.1:
GMM estimation of the level and inverse normalization is described in the text.

allows me to sidestep three methodological issues.  First, dividing the level normalization by � is only

possible if � is not equal to zero.  Second, if � is equal to zero,  the model contains no expectations

error.  Third, if � cannot equal zero but can take on negative values, which are themselves

economically meaningless, then the parameter space for � is not compact. and it is therefore not

possible to establish consistency of the GMM estimator.22

The estimates of adjustment costs and the implied speeds of employment adjustments from the

two normalizations are strikingly different.  In Figure 3.1, I plot the estimates of adjustment costs for



14

Table 3.1.a -- Summary Statistics
GMM Estimates of Half-life of Employment Adjustment -- Level Normalization

Two Digit SIC
Industry

Number of
Four Digit
Industries

Median
Half-life
Estimate

Mean
Half-life
Estimate

25th
Percentile
Estimate

75th
Percentile
Estimate

All Industries 104 0.50 0.54 0.37 0.68

Nondurables 39 0.50 0.54 0.37 0.68

Durables 65 0.48 0.54 0.36 0.68

20 20 0.57 0.58 0.42 0.73

22 5 0.48 0.48 0.29 0.68

23 7 0.45 0.45 0.34 0.50

24 6 0.72 0.69 0.47 0.86

25 5 0.48 0.53 0.41 0.68

26 1 0.61 0.61 N/A N/A

27 1 0.90 0.90 N/A N/A

28 3 0.49 0.59 0.41 0.87

31 2 0.22 0.22 N/A N/A

32 9 0.62 0.61 0.48 0.73

33 4 0.33 0.33 0.29 0.36

34 10 0.55 0.61 0.42 0.86

35 14 0.49 0.57 0.40 0.69

36 14 0.39 0.42 0.30 0.49

37 2 0.44 0.44 N/A N/A

38 1 0.84 0.84 N/A N/A

See notes at end of table.

the four-digit industries for which estimates are available for both normalizations, with the estimates

from the level normalization arrayed along the vertical axis and the estimates from the inverse

normalization arrayed along the horizontal axis.  The diagonal line has a slope of one.  The estimates

of adjustment costs from the inverse normalization are clearly larger than those from the inverse

normalization, generally by more than an order of magnitude.  Moreover, the figure shows that the

estimated adjustment costs from the level normalization seem to be unrelated to the estimates from the

inverse normalization.  The disparity between the estimates of the model from the two normalizations

are economically as well as statistically significant.  The wide discrepancy between these sets of

results underscores the importance of choosing an appropriate normalization for the estimating

equation.  From the estimates of adjustment costs using the level normalization, one could conclude

that production worker employment is essentially costless to adjust.  The estimates from the inverse
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Table 3.1.b -- Summary Statistics
GMM Estimates of Half-life of Employment Adjustment -- Inverse Normalization

Two Digit SIC
Industry

Number of
Four Digit
Industries

Median
Half-life
Estimate

Mean
Half-life
Estimate

25th
Percentile
Estimate

75th
Percentile
Estimate

All Industries 133 2.00 2.37 1.32 2.87

Nondurables 55 1.65 2.12 1.11 2.25

Durables 78 2.38 2.54 1.58 3.05

20 21 1.21 1.46 0.93 2.05

22 11 2.13 3.21 1.80 3.04

23 10 1.17 1.20 1.04 1.32

24 6 1.71 2.66 1.23 4.09

25 5 1.47 1.43 0.94 1.91

26 3 5.93 5.04 2.97 6.23

27 2 2.00 2.00 N/A N/A

28 3 4.70 3.61 0.63 5.50

31 5 1.66 1.71 1.17 2.29

32 11 2.73 3.04 1.50 4.30

33 6 3.17 3.13 2.56 3.55

34 11 1.89 2.20 1.33 2.55

35 18 2.87 2.93 2.47 3.36

36 17 2.04 2.36 1.75 2.61

37 3 1.42 1.42 1.12 1.73

38 1 1.60 1.60 N/A N/A

Notes for Table 3.1:
The median, 25th percentile, and 75th percentile values are estimates of the half-life of employment adjustment for a particular

four-digit industry within the two-digit industry.  The mean half-life is the unweighted average of half-lives estimated for the four-digit
industries within the two-digit industry.

normalization, however, suggest that adjustment costs are significantly larger, but still relatively small.

In general, it is difficult to give a direct interpretation to the adjustment cost parameter.  I

focus on the implied estimates of the half-life of employment adjustment, the measure used by

Hamermesh (1993) to compare the results of various studies of dynamic labor demand.  In Table 3.1.a

and 3.1.b, I present summary statistics for the estimates of the half-life of adjustment for 104 four-digit

manufacturing industries using the level normalization and for 133 four-digit industries using the

inverse normalization.  I present the median, mean, 25th percentile, and 75th percentile estimate for

both normalizations for each of the two-digit manufacturing industries and for the full sample, durable

goods industries, and nondurable goods industries.  The median implied half-life of employment



     Matthew Shapiro kindly provided me data from his original study.23

     The instruments included a constant and time trend, two lags of the number of nonproduction workers and the24

log of the number of nonproduction workers, one lag of the inverse of nonproduction workers, and one lag of
nonproduction-worker compensation.  Using the same instruments, the QML estimate of the adjustment cost
parameter was 0.56 with a standard error of 0.24.  Although the QML estimate is larger than either GMM estimate, it
still suggests that the GMM estimate from the level normalization may somewhat understate adjustment costs.
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adjustment from the level normalization is 0.5 month for the sample as a whole and for both durable

and nondurable goods industries.  This is four times as fast as the median half-life implied by the

estimates of the inverse normalization.  The estimates of the speed of adjustment from the inverse

normalization are near the lower end of the range of estimates of the half-life of employment

adjustments from studies summarized by Hamermesh (1993) that use monthly data.  The estimates

from the level normalization fall well outside this range.

The GMM estimates of adjustment costs described above show substantial normalization

sensitivity.  But, despite the theoretical arguments in section II, it is possible that this normalization

sensitivity is driven by factors other than those described above.  To address this concern, and to

determine whether the theoretical implications of section II apply more generally, I examined the

normalization sensitivity of Shapiro's (1986a) estimates of the costs of adjusting nonproduction

workers.   There were five equations in Shapiro's (1986a) dynamic factor demand model:  Euler23

equations for capital, production worker employment, nonproduction worker employment, and weekly

production worker hours, as well as an equation for the wage bill.  I limited my replication to the

estimation of the equation for nonproduction workers, and specifically to the equation for

nonproduction workers excluding cross adjustment terms:

In contrast to the Euler equation for nonproduction workers, the Euler equation for capital included

two expectations errors, and, therefore, was too complicated as an example.  In addition, the Euler

equations for production worker employment and weekly hours were poorly estimated, with some

specifications yielding negative adjustment costs.  Using the Euler equation for nonproduction workers,

I found normalization sensitivity and the predicted relationship between the estimates; the estimated

adjustment cost parameter from the level normalization--the normalization reported by Shapiro--was

0.28 with a standard error of 0.07 while the estimated adjustment cost parameter from the inverse

normalization was 0.43, also with a standard error of 0.07.24



     It is straightforward to show this for LIML estimation of single equation models.  Because I estimate two25

equations that are both part of a larger system, the estimation is closer in spirit to LIML than to FIML.
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IV. Quasi-Maximum Likelihood Estimates:  Normalization is Irrelevant

Unlike conventional GMM estimation, estimates obtained through maximum-likelihood

methods are invariant to changes in parameter normalizations (Hendry 1995, p. 382), both

asymptotically and in finite samples.  This property of ML estimators can be useful even for models

where the distribution of the errors is not normal.  Hausman (1975) shows that full information

maximum likelihood (FIML) estimates of linear systems and systems that are non-linear in parameters

but linear in variables have an instrumental variables (IV) interpretation, and are thus consistent, even

when the error structure is misspecified as a multivariate normal distribution.   The consistency25

obtains because the maximization of the log likelihood function under the assumption of joint

normality of the residuals is equivalent to a minimization of a weighted sum of squares when the

Jacobian matrix--the derivatives of the residuals with respect to the endogenous variables--does not

depend on the observations.

In this section, I briefly review Hausman's findings in the context of the adjustment cost model

and use them to obtain an instrumental variables estimator that is invariant to changes in the

normalizations of the equations.  I derive a quasi-maximum likelihood (QML) estimator of the two

equation structural model (equations (3.1) and (3.2)).  I follow Hausman (1977) by treating each of the

exogenous variables measured with error as endogenous by adding an equation to the model for each. 

I also treat �log(H ) as endogenous because it is correlated with the specification error in equationt

(3.1).  Using the notation in Hausman (1975), the model can be written as:

where T is the number of time periods; M is the number of equations; Y is the TåM matrix of

endogenous variables, including the four exogenous variables measured with error, dated no later than

period t+1; Z  is a T*(M*(k  + k )) matrix of the instruments; k  is the number of instruments in Zt 1 2 1 1

and k  is the number of instruments in Z ; V are the residuals; � is an MåM nonsingular matrix of the2 2

coefficients on the endogenous variables; and � is an (M*(k  + k ))*M matrix of the coefficients on1 2

the instruments (exogenous variables).  I suppress the nonlinearity of � and � for simplicity.  The

structural and measurement errors, V, are mutually independent and identically distributed M-variate

normal:
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(4.1)

(4.2)

Under this assumption, Hausman writes the log likelihood function for this as:

Hausman simplifies the first order conditions for a maximum, ,L/,� = 0, ,L/,� = 0, and ,L/,($ ) =-1

0 by solving for T in the condition,  ,L/,($ ) = 0,  and substituting this expression into the ,L/,(�) =-1

0 condition to obtain the necessary conditions for a maximum:

Equation (4.1) provides a method-of-moments interpretation for the QML estimator.  This estimator is

invariant to changes in parameter normalization.  The stacked first-order conditions in equation (4.1)

are weighted versions of the orthogonality conditions for the GMM estimation, where the weighting

matrix is the covariance matrix of the residuals.  This characteristic is key to the invariance of the

QML estimation.  Renormalization of the model systematically changes the score vector, the first

matrix on the left-hand side of equation (4.1), the model (Y� + Z�), and $  so that equation (4.1)-1

remains unchanged.  In addition, QML uses a restricted projection of the endogenous variables (or

exogenous variables measured with error) onto the exogenous variables, Z, as instruments by imposing

the values of known parameters:

In contrast, GMM does not use this information.  Hausman then shows that it is possible to rewrite the

model as:

such that the equations are stacked, and X includes all of the endogenous and predetermined variables

whose coefficients are not known a priori to be zero.  Then, equation (4.2) can be substituted into

equation (4.1) and the first order conditions can be rewritten as:
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The QML estimator of 	, which includes both � and �, can be written in what Hausman refers to as

instrumental variables form as:

where the instruments are

and the weighting matrix, S, is equal to:

The invariance of QML estimates to renormalization obtains because both the score and

covariance matrices are reparameterized, leaving the likelihood function unchanged.  The GMM

estimators, however, like all instrumental variables estimators, are not invariant to the normalization. 

In the level normalization, GMM does not impose the parameter restrictions on the orthogonality

conditions and the weighting matrix; in the inverse normalization, there are no restrictions to impose. 

In contrast to GMM, the QML estimator does not hold its weighting matrix constant; the QML first-

order conditions impose all of the parameter restrictions implied by the model.  Because there are no

parameter restrictions implied by the inverse normalization, GMM estimation of this normalization is

able to impose trivially all of the restrictions.

Figure 4.1 plots the QML estimates of adjustment costs against the GMM estimates of the

level normalization.  There is little relationship between the two sets of estimates.  While there is

substantial variability in the QML estimates, the GMM estimates of the level normalization are

universally smaller and show almost no variation.  Figure 4.2 plots the QML estimates against the

GMM estimates of the inverse normalization.  The QML estimates of adjustment costs are similar to,

though somewhat smaller than, the GMM estimates of the inverse normalization, with most GMM

estimates of the inverse normalization lying just above the 45 degree line.  I present the summary

statistics for the QML estimates of the implied half-life of adjustment in Table 4.1.  The QML

estimate of the implied half-life of adjustment of 1.5 months falls between the two GMM estimates of

2.0 months for the inverse normalization and 0.5 month for the level normalization.
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Figure 4.1
Comparison of Estimated Adjustment Costs:  GMM (Level Normalization) vs. QML

Notes for Figure 4.1:
GMM results are from estimation of equations (3.1) and (3.2); QML results are from estimation of equations (3.1) and

(3.2) jointly with equations for each of the period t variables measured with error.

V. Conclusions

In this paper, I identify how a feature of most conventional GMM estimators--the use of a

consistent estimate of the weighting matrix rather than the joint estimation of the weighting matrix and

the model parameters--can lead to the finite sample sensitivity of GMM estimation.  I find that in

Euler equation estimation, at least one of the model parameters multiplies the rational expectations

error(s) in most normalizations, including the most natural normalization, which obtains when an

unobserved conditional expectation is replaced with its realized value and an expectations error.  When

a model parameter multiplies the error, it implies restrictions on the structure of the optimal weighting
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Figure 4.2
Comparison of Estimates of Adjustment Costs:  GMM (Inverse Normalization) vs. QML

Notes for Figure 4.2:
GMM results are from estimation of equations (3.1) and (3.3); QML results are from estimation of equations (3.1) and

(3.2) jointly with equations for each of the period t variables measured with error.

matrix.  But, because GMM estimators that either hold the initial consistent estimate of the weighting

matrix fixed or allow only limited iteration on the weighting matrix do not parameterize the weighting

matrix, these estimators cannot impose these restrictions.  For a limited class of models--those that are

linear in variables and contain only a single dominant source of equation error--there is an alternative

normalization where no parameter multiplies the rational expectations error.  In this alternative

normalization, there are no restrictions on the structure of the weighting matrix.

GMM estimation of a normalization of the Euler equation where a model parameter multiplies

the expectations error effectively minimizes the square of this parameter times a term that converges in

probability to the asymptotic objective function divided by the square of the parameter.  In contrast,

GMM estimation of the alternative normalization minimizes a finite sample objective function that
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Table 4.1 -- Summary Statistics
Quasi-Maximum-Likelihood Estimates of Half-life of Employment Adjustment

Two Digit SIC
Industry

Number of
Four Digit
Industries

Median
Half-life
Estimate

Mean
Half-life
Estimate

25th
Percentile
Estimate

75th
Percentile
Estimate

All Industries 126 1.48 1.95 0.99 2.61

Non-Durables 52 1.08 1.58 0.70 1.68

Durables 74 1.90 2.21 1.29 2.86

20 21 1.04 1.27 0.78 1.67

22 11 1.58 2.82 1.08 2.61

23 9 0.69 0.67 0.41 0.85

24 6 2.08 2.76 1.17 4.07

25 5 1.27 1.12 0.60 1.56

26 1 1.53 1.53        N/A       N/A

27 2 1.75 1.75        N/A       N/A

28 3 4.53 3.48 0.41 5.51

31 5 0.43 0.62 0.37 0.96

32 10 2.13 2.53 1.29 3.21

33 6 3.14 3.24 2.64 3.74

34 10 1.40 1.53 1.12 1.97

35 18 2.85 2.81 2.29 3.42

36 15 1.43 1.74 1.00 2.54

37 3 1.17 1.10 0.80 1.34

38 1 1.40 1.40       N/A       N/A

Notes for Table 4.1:
The median, 25th percentile, and 75th percentile values are estimates of the half-life of employment adjustment for a particular

four-digit industry within the two-digit industry.  The mean half-life is the unweighted average of half-lifes estimated for the four-digit
industries within the two-digit industry.

converges to the asymptotic objective function.  Consequently, the parameter estimate from the first

normalization will be smaller in absolute value than the estimate from the alternative normalization.

And, because when no parameters multiply the rational expectations error there are no unimposed

restrictions on the weighting matrix, GMM estimates from the alternative normalization should be

preferred on theoretical grounds.

The findings here are significant because they point to the source of the GMM normalization

puzzle.  For a limited class of models, I can explain why estimates from one normalization will be

larger (in absolute value) than the estimates from a different normalization.  However, I leave it to

future work to explain why the two sets of estimates can be sufficiently different as to lead to different
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economic interpretations.  One area for future exploration that likely offers substantial payoffs is the

interaction between the failure to parameterize the weighting matrix and the degree of instrument

relevance.  In particular, the instruments used to estimate the dynamic labor demand model were more

correlated with the period t endogenous variable that is multiplied by the adjustment cost parameter in

the inverse normalization than with the realization of the period t+1 variable multiplied by the

adjustment cost parameter in the level normalization; poor instrument relevance may explain why the

GMM estimates of adjustment costs from the level normalization were so small.

Another important limitation of the results in this paper is that they apply only to models with

a single dominant source of equation error.  For many linear models, including the linear-quadratic

inventory model, there is no normalization that is analogous to the inverse normalization.  Unlike the

model studied here, there are two rational expectations errors in the linear-quadratic inventory model,

one dated period t+1 and one dated period t+2.  These disturbances are multiplied by different

parameters.  Consequently, none of the possible normalizations of the model have no parameters

multiplying both disturbances.

I show that for models with a single expectations error, QML estimates can be useful when

choosing between two competing sets of GMM estimates from different normalizations of the same

estimating equation.  But, QML estimation may not lead to consistent parameter estimates for models

that are nonlinear in variables because the method of moments interpretation of the QML estimator

depends on the constancy of the Jacobian.  Examples of models for which this concern may be

important include asymmetric adjustment cost models (e.g., Burda 1991) or time-varying adjustment

costs models (e.g., Burgess and Dolado 1989).  GMM estimation of these models may not be feasible

because these are subject to the same sensitivity to the choice of parameter normalization but, like the

linear-quadratic inventory model, offer no clear choice of parameter normalization.



     I treat the capital stock and non-production workers as fixed factors in the short run, and materials and energy26

inputs as fully flexible factors.  As I explain below, separability of the production function allows me to focus on the
allocation of production worker hours into hours per worker and the number of production workers, conditional on the
firm using the cost-minimizing levels of the other inputs.  Thus dropping the other factors from the variable costs
shown in equation (A.1) has no effect on the first-order conditions for production worker employment and hours per
worker.  The assumptions of separability of the production function and no cross-adjustment terms are driven by the
lack of monthly output and capital stock data for the four-digit manufacturing industries.  See Fleischman (1996) for
more detail.

24

(A.1)

Appendix A. A Model of Dynamic Labor Demand

The dynamic labor demand model I describe here is taken from Fleischman (1996).  A

representative firm has variable costs that include both production worker compensation and the costs

of adjusting production worker employment.  The firm minimizes the expected discounted value of

current and future variable costs by choosing production worker employment (L ) and hours pert

production worker (H ):t
26

where s and t both index time; B  is non-wage benefits per worker; W (H ) is hourly wages that dependt t t

on the weekly hours of production workers; r  is the real interest rate from period t to period t+1; Y  ist t

gross output; N  is non-production workers; K  is the capital stock; M  is materials input; E  is energyt t t t

input; A  is the level of productivity; G(L , H ) is production worker labor; � is the adjustment costt t t

parameter; and � is the elasticity of production worker labor with respect to hours per production

worker.  Total production worker hours is the product of one flexible factor (hours per worker) and

one quasi-fixed factor (production worker employment).

The key features of the model are adjustment costs that are symmetric and quadratic in the

size of the (net) percentage change in production worker employment and proportional to production

worker compensation, separability of the production function, output elasticities of hours per worker

and production worker employment that can differ, elastic supply of production workers at the market

rate of compensation per worker, and a schedule of hourly wage rates that is increasing in the number



     I assume that the overtime premium is equal to one-half of the straight-time (base) wage.  This assumption is27

the only one consistent with the construction of the data by the Bureau of Labor Statistics.
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(A.2)

(A.3)

(A.4)

of hours per production worker and is internalized by the firm.  The separability of the production

function allows me to focus on the firm's allocation of production worker hours into hours per worker

and the number of production workers.  Changes in the level of output or the prices of other factors

affect only the level of total production worker hours, not its composition.

The firm�s first order conditions for employment and hours per worker are:

and

where ,F /,G  is the marginal product of production worker labor, G(L , H ), and � , the Lagranget t t t t

multiplier on the production function constraint, is marginal cost in period t.  I equate marginal cost

from equations (A.2) and (A.3), and cancel common terms to obtain:

where C  is total compensation per production worker, which is equal to non-wage benefits per workert

plus average weekly wages.

I follow Bils (1987) in using movements in hours per worker, overtime hours per worker, and

production worker employment to identify movements in marginal cost, and hence, the costs of

adjusting employment.  Because workers receive an overtime premium and weekly overtime hours are

positively related to total weekly hours, the firm perceives that hourly wages are an increasing function

of the number of hours per worker.   Under the assumptions of a constant elasticity of overtime hours27

with respect to weekly hours (�) and after imposing the relationship between the hourly wage paid,

W , and the base wage (average hourly earnings excluding overtime), W , implicit in the Bureau oft t
p b
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(A.5)

(A.6)

(A.7)

Labor Statistics (BLS) estimates of hourly wage and weekly hours-- --equation

(A.4) can be rewritten:

where O  is overtime hours per worker  I follow Shapiro (1986a, 1986b) by jointly estimating equationt

(A.5) along with an equation that identifies the parameters of the marginal wage schedule:

where e  is the average rate of change in overtime hours and 
  is a specification error representing the0 t

determinants of the relationship between weekly hours and weekly overtime hours left out of equation

(A.6).

Equation (A.5) contains the unobservable period t expectation of the discounted percentage

change in period t+1 employment (where the discount factor includes the interest rate as well as the

ratio of the period t+1 to the period t values of total production worker compensation).  The realized

value is equal to the time t expectation plus the rational expectations forecast error, � :t+1

I substitute the realized value into equation (A.5) to obtain:

In this normalization, which I refer to as the level normalization, the adjustment cost parameter, �,

multiplies the rational expectations error, � .  I obtain an alternative normalization of the marginalt+1

cost condition, which I refer to as the inverse normalization, by dividing equation (A.7) by �:
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(A.8)

In the text I describe the joint estimation of equations (A.6) with either equation (A.7) or

equation (A.8)
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